Effective permittivity of mixtures: numerical validation by the FDTD method
نویسندگان
چکیده
The present paper reports the results of an extensive numerical analysis of electromagnetic fields in random dielectric materials. The effective permittivity of a two-dimensional (2-D) dielectric mixture is calculated by FDTD simulations of such a sample in a TEM waveguide. Various theoretical bounds are tested in light of the numerical simulations. The results show how the effective permittivity of a mixture with random inclusion positionings is distributed. All possible permittivity values lie between Wiener limits, and according to FDTD simulations the values are almost always between Hashin-Shtrikman limits. Calculated permittivity distribution is also compared with theoretical mixture models. No model seems to be able to predict the simulated behavior over the whole range of volume fraction.
منابع مشابه
Effective Permittivity for FDTD Calculation of Plasmonic Materials
We present a new effective permittivity (EP) model to accurately calculate surface plasmons (SPs) using the finite-difference time-domain (FDTD) method. The computational representation of physical structures with curved interfaces causes inherent errors in FDTD calculations, especially when the numerical grid is coarse. Conventional EP models improve the errors, but they are not effective for ...
متن کاملEfficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols.
We have examined the Maxwell-Garnett, inverted Maxwell-Garnett, and Bruggeman rules for evaluation of the mean permittivity involving partially empty cells at particle surface in conjunction with the finite-difference time-domain (FDTD) computation. Sensitivity studies show that the inverted Maxwell-Garnett rule is the most effective in reducing the staircasing effect. The discontinuity of perm...
متن کاملA General Fdtd Algorithm Handling Thin Dispersive Layer
A novel general technique for treating electrically thin dispersive layer with the finite difference time domain (FDTD) method is introduced. The proposed model is based on the modifying of the node update equations to account for the layer, where the electric and magnetic flux densities are locally averaged in the FDTD grid. Then, based on the characteristics that the complex permittivity and ...
متن کاملEffective optical response of silicon to sunlight in the finite-difference time-domain method.
The frequency dependent dielectric permittivity of dispersive materials is commonly modeled as a rational polynomial based on multiple Debye, Drude, or Lorentz terms in the finite-difference time-domain (FDTD) method. We identify a simple effective model in which dielectric polarization depends both on the electric field and its first time derivative. This enables nearly exact FDTD simulation o...
متن کاملDetermination of Complex Permittivity with Neural Networks and Fdtd Modeling
A simple novel cavity-independent method of determination of dielectric properties of arbitrarily shaped materials is presented. Complex permittivity is reconstructed using a neural networking procedure matching the measured and FDTD-modeled frequency characteristics of the reflection coefficient. High accuracy and practical suitability are demonstrated through numerical testing and determinati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 38 شماره
صفحات -
تاریخ انتشار 2000